Pages 370-375

ISOLATION AND IDENTIFICATION OF 23,25-DIHYDROXY-24-OXO-VITAMIN D3: A METABOLITE OF VITAMIN D3

Eberhard Mayer*, G. Satyanarayana Reddy A , B , Jay R. Kruse $^{\Omega}$, George Popjak $^{\Omega}$ and Anthony W. Norman* "

*Department of Biochemistry, University of California, Riverside, CA 92521, the $^\Delta$ Newborn Division and Children's Hospital Research Foundation, University of Cincinnati Medical Center, Cincinnati, Ohio 45267 and the $^\Omega$ Departments of Psychiatry and Biological Chemistry, School of Medicine, University of California, Los Angeles, CA 90024

Received October 7, 1982

A new metabolite of vitamin D₃ has been isolated in pure form from incubations of rat kidney homogenates with 25-hydroxyvitamin D₃ [25-0H-D₃]. It was identified as 23,25-dihydroxy-24-oxo-vitamin D₃ [23,25(0H)₂-24-oxo-D₃] by means of ultraviolet absorption spectrophotometry and mass spectrometry. Also, 25-0H-D₃-26,23-lactone and 24R,25-dihydroxyvitamin D₃ were obtained from the same incubation mixtures. The enzyme activity responsible for the conversion of 25-0H-D₃ to 23,25(0H)₂-24-oxo-D₃ was induced by perfusion of the kidneys in vitro with 50 nM 1,25-dihydroxyvitamin D₃ [1,25(0H)₂D₃].

Vitamin D₃ undergoes metabolic conversion before exerting its biological effects (1). It is first hydroxylated in the liver to form 25-hydroxyvitamin D₃ [25-OH-D₃]; subsequently it is further processed by the kidney to yield either 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] or 24R,25-dihydroxyvitamin D₃ [24R,25(OH)₂D₃]. 1,25(OH)₂D₃ is recognized as the biologically active form of vitamin D₃, whereas the biological role of $24R,25(OH)_2D_3$ is still a matter of controversy (2). Several studies have demonstrated that 1,25(OH)₂D₃ can induce the 25-OH-D₃-24-hydroxy-lase both <u>in vivo</u> in kidneys (3) from vitamin D-depleted animals as well as in kidney cells grown in cell culture (4-6). Using isolated perfused

^{\$}Present address: Newborn Division, Dept. of Pediatrics, Cleveland Metropolitan Hospital, 3395 Scranton Rd., Cleveland, OH 44109. "To whom all correspondence should be addressed.

^{*}Supported in Riverside by USPHS grant AM-09012-018, in Cleveland by USPHS grants HD-11,725, HD-07200 and MCH-0DH-137 and in Los Angeles by grants HL-12,745 and HD-06,576. E.M. was supported by the Deutsche Forschungsgemeinschaft. This is paper XXI in a series entitled "Studies on the Metabolism of Vitamin D", the previous paper in this series is reference (17).

kidneys from vitamin D-replete rats, we recently found (7) that exposure of the kidneys to $1,25(0\text{H})_2\text{D}_3$ in vitro results in increased production of $24\text{R},25(0\text{H})_2\text{D}_3$ as well as another unknown vitamin D compound, which we have provisionally designated Peak X (7). Further, the induction of the enzyme(s) which convert 25-OH-D_3 to Peak X was completely abolished by the presence of actinomycin D or cycloheximide in the perfusate (7). We now report the isolation and chemical characterization of Peak X.

MATERIALS AND METHODS

<u>Chemicals</u>: 25-0H-D₃ was a gift from Upjohn Co. (Kalamazoo, MI); 24R,25- $\overline{(OH)_2D_3}$ and 1,25 $\overline{(OH)_2D_3}$ were kindly provided by Dr. M. Uskoković, Hoffmann-LaRoche, Inc. (Nutley, NJ) and 25R-OH-D₃-26,23S-lactone was a gift from Dr. D. Williams, Cambridge, UK.

<u>Animals</u>: Male Wistar rats (300 g) were purchased from Harlam Industries Inc. (Indianapolis, IN) and fed a regular rodent diet (sufficient in calcium, phosphorus and vitamin D).

<u>Kidney perfusion technique and incubation procedure</u>: The isolated kidney perfusion technique was performed as described before in detail (7-9). The right kidneys of three rats were perfused for 15 min with a Krebs-Henseleit bicarbonate buffer (pH 7.4, 37°C) containing bovine serum albumin (6 g/dl), glucose (5 mM), a mixture of L-amino acids and 1,25(0H)₂D₃ (5 x 10⁻⁸ M). Using the same buffer without 1,25(0H)₂D₃ included, the perfusion of the kidneys was contained for 4 h. Then, a 20% homogenate (w/v) was prepared in 10 mM N-2-hydroxy-ethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer (pH 7.4) containing 0.2 M sucrose and 10 mM KCl. A crude mitochondrial fraction was prepared by centrifugation of the homogenates at 3,000 x g for 10 min. The pellet was transferred to a 500 ml Erlenmeyer flask containing 50 ml of 20 mM HEPES buffer (pH 7.4), 100 mM KCl, 2 mM MgSO₄ and 20 mM succinate. The flask was gassed for 30 s with 100 % oxygen and subsequently, the substrate 25-0H-D₃ (20 μg) dissolved in 100 μl ethanol was added. After incubation at 37°C for 30 min in a shaking water bath, the reaction was terminated by the addition of CH₂Cl₂/MeOH (1:2, v/v). The extraction was carried out as described by Lambert et al. (10).

Chromatographic procedures: The concentrated lipid extracts were first chromatographed on Sephadex LH 20 columns (0.6 x 12 cm), which were eluted with n-hexane:chloroform:methanol (9:1:1, v/v). The fraction from 11 to 20 ml was evaporated under a stream of nitrogen. Further purification was achieved by high performance liquid chromatography (Waters Model 6000A equipped with a detector, Model 440, monitoring UV-absorbing material at 254 nm, Waters Associates, Milford, MA). A $\mu Porasil$ column (0.39 x 30 cm, Waters) was equilibrated and eluted with hexane:isopropyl alcohol (98:2, v/v) at a flow rate of 2 ml/min (Figure 1). Peak X was eluted from 46 to 53 ml, 24R,25(0H)2D3 from 72 to 84 ml. Another compound (Peak Z) was eluted sharply after Peak X (54 to 60 ml). Peak X as well as Peak Z were further purified by reverse phase HPLC using a $\mu Bondapak$ column (0.39 x 30 cm), which was eluted with water: methanol (35:65, v/v) at a flow rate of 2 ml/min. Peak X was eluted from 38 to 46 ml, Peak Z from 48 to 56 ml. Further purification was achieved by the straight phase HPLC system described above. Finally, the compounds were chromatographed on a Zorbax SIL column (0.41 x 25 cm, Du Pont, Wilmington, DE) which was equilibrated and eluted with dichloromethane:isopropyl alcohol (98:2, v/v) at a flow rate of 2 ml/min. Peak X as well as Peak Z were separately eluted at 14 to 15 ml, while authentic 25-0H-D3 eluted at 11 to 11.5 ml.

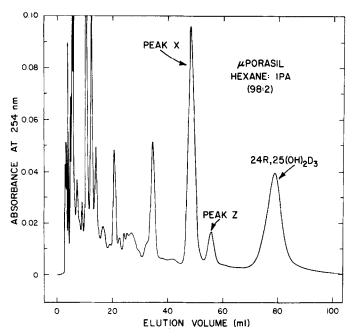


Figure 1: Purification of Peak X [23,25(0H)₂-24-oxo-D₃] by high performance liquid chromatography. A μ Porasil column was eluted with hexane: isopropyl alcohol (98:2, v/v) at a flow rate of 2 ml/min.

RESULTS AND DISCUSSION

The ultraviolet absorption spectra of Peak X, Peak Z and putative 24R,25(OH)₂D₃ showed a λ_{max} at 265 nm and a λ_{min} at 228 nm demonstrating the presence of the 5,6-cis-triene-chromophore characteristic for the D The overall yield from incubations with the kidney homogenates of 24 rats in total was 4.8 μg of Peak X, 0.7 μg of Peak Z and 6 μg of putative 24R,25(OH)₂D₃ after 5 chromatographic steps. The mass spectrum of Peak X is shown in Figure 2. Major ions, relative intensities and structural assignments are as follows: m/e 430, 22, M^+ ; 397, 6, M^+ - H_2O - CH_3 ; 372, 6, M⁺-C₃H₆O; 271, 8, M⁺-side chain; 253, 12, 271-H₂O; 136, 85, (A ring + C₆ + C₇)⁺; 118, 100, 136-H₂O. Characteristic vitamin D cleavage ions at m/e 271, 253, 136 and 118 indicate that the seco-steroid nucleus of the molecule has remained unchanged and that the metabolic alterations have been introduced in the side chain. The apparent molecular ion at m/e 430 suggests that three oxygens and one degree of unsaturation are present in the side chain of the 25-hydroxylated vitamin D molecule. To localize the hydroxyl functions in the metabolite, Peak X was converted to a tris-trimethyl-

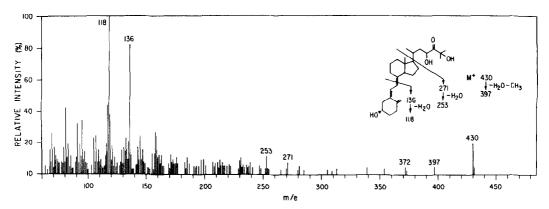


Figure 2: Mass spectrum of Peak X [23,25(OH)2-24-oxo-D3].

silylether derivative and then analyzed by mass spectrometry. Major ions, relative intensities and structural assignments are as follows: m/e 646, 8, M+; 556, 1, M+-HOTMS; 515, 1, M+-C₃H₆-OTMS; 487, 3, M+-C₄O₂H₆ TMS; 397, 2, 487-HOTMS; 307, 2, 397-HOTMS; 208, 7, (A ring + C₆ + C₇)+; 131, 100, C₃H₆OTMS+; 118, 19, 208-HOTMS. The apparent molecular ion at m/e 646 demonstrates that three hydroxyl groups are present as trimethylsilylether derivatives in the molecule. The ion at m/e 487 strongly suggests the presence of a hydroxyl group at C-23 (11, 12) and also the likelihood that there are no further alterations below C-23. The cleavage peak at m/e 131 (base peak) illustrates that no further modifications at carbon 26 and/or carbon 27 have occurred. Therefore, the structure of the new vitamin D metabolite is proposed to be 23,25(OH)₂-24-oxo-D₃.

Peak Z comigrated exactly on three different HPLC systems with authentic $25R-OH-D_3-26$, 23S-lactone. Further evidence for the structure of Peak Z was obtained by mass spectrometry. Major ions, structural assignments and relative intensities were as follows: m/e 428, 16, M+; 410, 16, M+-H₂0; 136, 76, (A ring + C_6 + C_7)+; 118, 100, 136-H₂0. The mass spectrum of Peak Z is consistent with the structure of 25-OH-D₃-26,23-lactone as described by Wichmann <u>et al.</u> (13).

The putative $24R,25(OH)_2D_3$ comigrated on HPLC in all three systems studied with authentic $24R,25(OH)_2D_3$. The mass spectrum of the compound as well as the tris-trimethylsilyl-ether derivative demonstrated its identity with

authentic 24R,25(OH)2D3 (data not shown). Using the isolated kidney perfusion technique, we reported previously that 1,25(OH)₂D₃ induces in rat kidney the production of 24R,25(OH)₂D₃ and another metabolite which comigrated with authentic 25-OH-D3-26,23-lactone on both HPLC systems applied (14). However, more rigorous chromatography revealed that this compound is, in fact, not identical with authentic 25-OH-D₃-26,23-lactone; it was designated as Peak X. The production of 25-OH-D₃-26,23-lactone was not detectable in these experiments where 25-0H-[26,27-3H]-D3 was employed as substrate, possibly due to isotope effects (15). It will be interesting to learn by further experiments whether 24R,25(OH)₂D₃ can serve as a precursor of $23,25(0H)_2-24-oxo-D_3$. It was shown before that $24R,25(0H)_2D_3$ can be oxidized to 25-OH-24-oxo-D3 by chick kidney homogenates (16). It is feasible that 25-OH-24-oxo-D₃ might undergo 23-hydroxylation to yield 23,25-(OH)2-24-oxo-D3. Also, the biological activity of this new metabolite is of interest. Further studies on these issues are now underway in our laboratories.

ACKNOWLEDGMENTS

We wish to acknowledge the support and contribution of M. Ho and R. C. Tsang.

REFERENCES

- Norman, A.W. (1979) Vitamin D: The Calcium Homeostatic Steroid Hormone. Academic Press, New York.
- 2. Norman, A.W., Roth, J. and Orci, L. (1982) Endocrine Reviews (in
- Tanaka, Y. and DeLuca, H.F. (1974) Science 183, 1198-1200. 3.
- Henry, H.L. (1979) J. Biol. Chem. 254, 2722-2729.
- Trechsel, U., Bonjour, J.P. and Fleisch, H. (1979) J. Clin. Invest. 64, 206-217.
- Omdahl, J.L., Hunsaker, L.A., Evan, A.P. and Torrez, P. (1980) J. Biol. 6. Chem. 255, 7460-7466.
- G.S. Reddy, A.W. Norman, E. Mayer, M. Ho and R.C. Tsang (1982) Biochem. 7. Biophys. Res. Commun. 107, 922-928.
- Rosenthal, A.M., Jones, G., Kooh, S.W. and Fraser, D. (1980) Am. J. 8. Physiol. 239, E12-E20.
- Reddy, G.S., Jones, G., Kooh, S.W. and Fraser, D. (1982) Am. J. Physiol. (in press).
- Lambert, P.W., Syverson, B.J., Arnaud, C.D. and Spelsberg, T.L. (1977) J. Steroid Biochem. 8, 929-937.
 Tanaka, Y., Wichmann, J.K., Schnoes, H.K. and DeLuca, H.F. (1981)
- Biochemistry 20, 3875-3879.

Vol. 109, No. 2, 1982 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

- 12. Wichmann, J.K., Schnoes, H.K. and DeLuca, H.F. (1981) Biochemistry 20, 7385-7391.
- Wichmann, J.K., DeLuca, H.F., Schnoes, H.K., Horst, R.L., Shepard, R.M. 13. and Jorgensen, N.A. (1979) Biochemistry 18, 4775-4780.
- Reddy, G.S., Norman, A.W., Mayer, E., Jones, G., Ho, M. and Tsang, R.C. (1982) in Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism, Norman, A.W., Schaefer, K., v. Herrath, D., and Grigoleit, H.G. (eds), 511-513.

 Tanaka, Y. and DeLuca, H.F. (1982) Arch. Biochem. Biophys. 213, 517-522.

 Takasaki, Y., Suda, T., Yamada, S., Takayama, H. and Nishii, Y. (1981)

 Biochemistry 20, 1681-1686.
- 15.
- 16.
- 17. Ohnuma, N. and Norman, A.W. (1982) J. Biol. Chem. 257, 8261-8271.